Step of Proof: p-fun-exp-compose
11,40
postcript
pdf
Inference at
*
2
1
1
1
I
of proof for Lemma
p-fun-exp-compose
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
h
,
f
:(
T
(
T
+ Top)).
f
^
n
- 1 o
h
= primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
5.
T
(
T
+ Top)
6.
f
:
T
(
T
+ Top)
7.
id
:
T
(
T
+ Top)
8. p-id() =
id
primrec(1+(
n
- 1);
id
;
i
,
g
.
f
o
g
) =
f
o primrec(
n
- 1;
id
;
i
,
g
.
f
o
g
)
latex
by RWO "primrec_add" 0 THEN Auto THEN Reduce 0 THEN Auto
latex
.
Definitions
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
,
#$n
,
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
P
Q
,
Void
,
a
<
b
,
A
B
,
x
.
A
(
x
)
,
{
i
..
j
}
,
n
+
m
,
f
o
g
,
t
T
,
primrec(
n
;
b
;
c
)
,
x
:
A
.
B
(
x
)
,
s
=
t
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
Lemmas
primrec
add
,
le
wf
,
int
seg
wf
,
p-compose
wf
,
primrec
wf
origin